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Abstract
Many recent studies have shown that Fractal Dimension (FD), a ratio for figuring out the com-
plexity of a system given its measurements, can be used as an useful index to provide informa-
tion about certain brain disease. Our research focuses on the Alzheimer’s disease changes in 
white and grey brain matters detected through the FD indexes of their contours. Data used in 
this study were obtained from the Alzheimer’s Disease (AD) Neuroimaging Initiative database 
(Normal Condition, N = 57, and Alzheimer’s Disease, N = 60). After standard preprocessing 
pipeline, the white and grey matter 3D FD indexes are computed for the two groups. A statisti-
cal analysis shows that only grey matter 3D FD indexes are able to differentiate healthy and 
AD subjects. Although white matter 3D FD indexes do not, it is remarkable that their presence 
enhance the separation capability of previous ones. In order to valuate the classification capa-
bility of these indexes on healthy and AD subjects, we define several Neural Networks models. 
The performances of these models vary according to the statistical analysis and reach their 
best performances when each 3D FD input index is changed into a sequence of 2D FD indexes 
of (a subset of) the horizontal slices of the white and grey matter volumes.
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1  Introduction

“What we observe is not nature in itself but nature exposed to our method of questioning” 
wrote German physicist Werner Heisenberg, who was the first to fathom the uncertainty 
inherent in quantum physics. This sentence does not only apply to quantum physics but it is 
extendable to all scientific fields. Currently, it is now well known that Euclidean geometry 
can only interpret regular and smooth objects that are almost impossible to find in nature 
[19], so it cannot be used to quantify the white and grey matter of the brain accurately. 
Studying the irregular geometry of the brain is possible, as an example, thanks to fractal 
geometry [5]. In fact anatomical systems can be geometrically classified as natural frac-
tals due to their irregular shape and the fact that their measures properties depend on the 
scale at which they are measured [38]. The results can be translated to clinical practise 
to help physicians in discriminating different pathologies [12], different stage of a physi-
opathological condition, temporal changes in the same pathology followed over time and 
morphological variations in anatomical structures [35]. Fractal analysis methods can be 
used to quantify complexity of brain activity and changes in structure of brain regions, in 
particular in case of Alzheimer disease [44].

Alzheimer is an irreversible neurodegenerative disease that results in a loss of mental 
function caused by the deterioration of brain tissue. AD is considered one of the most com-
mon causes of dementia, demonstrating progressive decline in visuo-spatial abilities, lan-
guage and memory. In AD, symptoms gradually worsen over a limited number of years: in 
its early stages, memory loss is mild, but, with late-stage Alzheimer’s, individuals lose the 
ability to carry on a conversation and, by degrees, respond to their environment and rela-
tives. During the whole lifespan, cognitive abilities change increasing from childhood to 
midlife and then, through late middle age to old age, there is a slow and relentless decline. 
From a neuroanatomical point of view, AD is conceptualized primary as a progressive 
consequence of two hallmark pathological changes: extracellular amyloid plaques, which 
are composed of chains of amino acid amyloid-beta (A � ), the main biological marker of 
AD brain, and neurofibrillary tangles, intraneuronal aggregates composed of phosphoryl-
ated � protein [34], normally located along the axon, where it physiologically facilitates the 
axonal transport. Because of the distribution of this pathology and its associated neurode-
generation, AD is typically considered a disease of the brain’s grey matter but, in addition 
to the neuronal loss characteristic of the disease, white matter degeneration and demyeli-
nation may be important pathophysiological features. Myelin loss and the inability of the 
oligodendrocytes [15], the cells responsible for the production and maintenance of myelin, 
to repair myelin damage may be additional central features of AD [6].

The relevant changes in the white and grey matter structure and extension in AD sub-
jects may be revealed by standard measurements of the topological properties of their con-
tours. In particular, their local and global smoothness can be investigated through fractal 
dimension, a measure that expresses how far a jagged contour locates with respect to a 
fractal one. Indeed, fractal dimension has been widely used to investigate the status and the 
evolution of the shapes of natural structures, tissues and lesions along the whole subjects’ 
lifespan [1, 14, 33]. It was also used in case of multiple sclerosis [16], schizophrenia and 
manic-depressive patients [9].

Concerning the study of AD using fractal dimension, previous investigations show that 
subjects with AD have decreased fractal dimension (FD) in different physical structures of 
the brain [22, 24, 31]. These studies mainly focus on the grey matter FD, since no significant 
statistical correlation between white matter FD changes and AD are reported. However, since 
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AD degeneration involves white and grey matter, both their contours could be considered as 
constituted of parts that are in some ways self-similar (so presenting a fractal structure) and 
whose extensions are not complementary. Therefore, they can be thought as different aspects 
of the same degenerative process. Indeed, the present study moves from this assumption and 
proposes the use of three layers Neural Networks (NN) in order to improve the clusterization 
and classification of AD patience using both white and grey matter FD indexes. Up to our 
knowledge, no combined white and grey matter FD analysis is present in literature to detect 
brain changes related to the AD diagnosis, so the novelty of our approach both in terms of the 
used dataset and of the inspection and prediction methodology through a series of NN mod-
els. As a matter of fact, NNs are often used to do predictions and diagnosis in a wide range 
of fields, from social science to engineering and health care (for an overview on NNs models 
and applications see [2, 3, 37]). In principle, the NNs perform as well as conventional statisti-
cal methods, but it is not rare that they outperform in accuracy on validation samples. These 
advantages are related to their possibilities, as nonlinear multiple regression models, both to 
fit almost any nonlinear phenomenon, and to identify patterns in subsets of the input vari-
ables. The internal parameters estimation is a crucial phase in the design of a NN, and it is 
carried on during a sequence of training sessions where it is usually required to minimize the 
sum of squared errors by means of nonlinear search procedures i.e., back propagation [41], 
and quick propagation [17] instead of the standard least squares computation.

The aim of the present study is to investigate whether the Fractal Dimension is sensi-
tive to change in white and grey matter of healthy and Alzheimer’s brain. In particular, 
the FD indexes are computed after a preprocessing stage where white and grey matter of 
each subject are segmented. The obtained sequences are first statistically compared, both 
singularly and then coupled, to provide evidence of the morphological brain changes that 
appear during Alzheimer’s disease. Then, the predictive capabilities of FD’s measures are 
tested using a series of NN whose inputs vary from the single three dimensional FD values 
of the white and grey matter for each subject, to sequences of two dimensional FD values 
obtained by a subset of the slices of each considered MRI.

2 � Materials and methods

2.1 � Subjects

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging  Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched 
in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been totest whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of mild cog-
nitive impairment (MCI) and early Alzheimer’s disease (AD). Partecipants are recruided 
from 63 sites in the United States and Canada, in order to collect a variety of clinical and 
imaging assessment.

Subjects are followed and re-examined through time to track the pathology of the disease 
as it progresses. ADNI was launched in 2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. For up-to-date information on ADNI, visit www.​adni-​
info.​org. Results are then shared by ADNI through the USC Laboratory of Neuro Imaging’s 

http://www.adni-info.org
http://www.adni-info.org
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Image and Data Archive (IDA) [23]. Our research included 57 healthy subjects who fulfilled 
the ADNI criteria for normal cognition (NC) and 60 patients with AD.

Details on the inclusion/exclusion criteria of the subjects can also be retrieved in the 
ADNI info website (www.​adni-​info.​org). Here, we specify the clinical scales for the AD 
diagnosis: abnormal memory function score on Wechsler Memory Scale [30] (adjusted for 
education), Mini-Mental State Exam score between 20 and 26 [26], Clinical Dementia Rat-
ing equals 0.5 and Memory Box score at least 1.0 [29]. In addition, all the subjects are 
required to have a Modified Hachinski score less than or equal to 4 [28] and a geriatric 
Depression Scale less than 6 [43].

All the subjects were between 55 to 90  years. The ages are not statistically different 
between groups.

2.2 � MRI acquisition

As reported in ADNI website, the MRI protocol for ADNI1 images focused on consist-
ent longitudinal structural imaging on 1.5 T scanners using T1 and dual echo T2-weighted 
sequences. After the acquisition, all the images undergo quality control at Mayo Clinic in 
which two series of quality controls are performed, adherence to the protocol parameters 
and series-specific quality (i.e., subject motion, anatomic coverage, etc.). In particular, 
Mayo provided intensity normalized and gradient un-warped TI image volumes. The image 
corrections provided by ADNI are described at https://​adni.​loni.​usc.​edu/​metho​ds/​mri-​tool/​
mri-​analy​sis/.

2.3 � Preprocessing, segmentation and border extraction

We decided to perform a second series of standard preprocessing steps using the Matlab 
toolbox CONN [36, 45] in order to guarantee the perfect alignment and centering of the 
subjects in the chosen standardized space. The images also undergo a smoothing process 
to improve the signal-to-noise ratio and attenuate anatomical variances caused by inaccu-
rate inter-subject registration. Then, we segmented white and grey matter in two steps, as 
shown in Fig. 1:

•	 separates brain regions from extracerebral parts;
•	 generates two separate images containing white matter and grey matter basically rely-

ing on the intensity values of the pixel intensities.

The segmentation of both the white and grey matter relies on [4] and it is provided 
by the CONN toolbox. This algorithm is considered as a standard one for general pur-
pose studies i.e. when no lesions are present andor no specific pulse sequences are consid-
ered. The choice is motivated by the fact that, although different segmentation algorithms 
are present in literature, we expect that, while varying the total number of white and grey 
detected pixels, their distributions and mutual ratio both for the same subjects and between 
subjects, is not affected and similarly holds for the fractal dimensions. We stress again that 
the white and grey matter volumes obtained after the segmentation are not self comple-
mentary, as shown in Fig. 2.

http://www.adni-info.org
https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
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Finally, we extract the borders of the detected regions for the successive computation of their 
fractal dimensions. The extraction is performed by the Matlab function getborder [42] that returns 
the outline logical values of a binary picture using 8-connected neighborhood (see Fig. 2).

2.4 � Fractal measures

Fractal dimension is a measure that indicates the complexity of an object comparing how 
detail in their patterns change with the scale at which it is measured.

From an algorithmic point of view, FD is measured using box-counting methods [20, 25, 
39]. Box-counting methods have many good properties like robustness [24] and ability to 
evaluate the fractal of an object with and without self-similarity [16]. Moreover, it is possible 
to estimate the global complexity of a set of irregularly shaped objects, like white and grey 
matter.

From a mathematical point of view, box counting methods compute FD as

where � is the side of the box and N(�) is the smallest number of contiguous and non-over-
lapping boxes of side � required to cover the border of the volume. Strictly speaking, box 

FD = lim
�→0

log(N(�))

log
(

1

�

)

Fig. 1   From left to right: example of an axial slice view of the original MRI not defaced in which eyes, 
nose and ears are perfectly visible; an axial slice view of white matter (center image) and grey matter (right 
image) extracted from MRI after preprocessing steps provided by Conn toolbox

Fig. 2   On the left an axial 2D 
slice image of the white matter 
region of a MRI processed 
image. On the right the seg-
mented border extraction of the 
same region
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counting methods compute the limit by covering the object with box of decreasing length 
side � . We estimate FD using boxcount package [18] in Matlab.

2.5 � Statistical analysis

Statistical analysis were performed using packages stats, MVN, heplots, Hotelling in R [13, 
27, 32, 40]. We investigated the measure of fractal dimension of white and grey matter in 
57 healthy subjects (ND) and 60 with Alzheimer’s disease (AD). Table 1 contains a sum-
mary of the values of FD for each group expressed by mean ± s.d..

The results show that t− test assumptions are not satisfied for white matter in AD group. 
Therefore, we decided to use Wilcox test instead of t− test for that case.

Then, we consider the impact of both white and grey matter FDs. In this case, each sub-
ject has associated two measurements, one for the white matter and one for the grey matter. 
Therefore, to evaluate differences between groups, we used a Hotelling’s T-test. Also in 
this case, we check that assumptions hold. Specifically, data must come from a multivariate 
normal distribution and the covariance between the two groups must be equal. For the for-
mer we use a Henze-Zirkler (HZ) test [21] and for the latter we use a Box M-test [8]. The 
result of HZ are swhon in Table 4.

Table 1   Summary of FD values

Note that we compared NC and AD group both for white and grey 
matter. In order to apply t− test, we checked that data were normally 
distributed and that variances of each group for each (separate) type 
of matter are equal. For the former we used Shapiro test while for the 
latter we used F− test. Note that we suppose results significant when 
p < 0.05 . Result are shown in Tables 2 and 3

White Grey

NC 2.246 ± 0.25 2.213 ± 0.070

AD 2.240 ± 0.030 2.262 ± 0.054

Table 2   Shapiro test

The boldface entry indicates the only significant value corresponding 
to p < 0.05 

White Grey

NC 0.657 0.687
AD 0.001 0.841

Table 3   F− test Type White Grey

p 0.289 0.078

Table 4   Henze-Zirkler test Group ND AD

p 0.778 0.137
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By the obtained results, we cannot reject the hypothesis that data comes from multivari-
ate normal distribution. Moreover, the Box M-test gives a p− value of 0.188 and therefore 
we do not reject the hypothesis that the two covariance matrices are equal. After these 
tests, we assumed that both the assumptions are satisfied.

2.6 � Neural network model

The NN model selected for this study is a widely used three-layers fully-connected net-
work whose general topology is shown in Fig. 3. The three layers have a different num-
ber of nodes, linked with weighted directed connections. In particular, the cardinality 
of the input layer varies according to the six input data set used in the study: 3D-White, 
3D-Grey, 3D-WhiteGrey, 2D-White, 2D-Grey and 2D-WhiteGrey. The inputs 3D-White, 
3D-Grey, and 3D-WhiteGrey are the three dimensional FD indexes of the white mat-
ter, the grey matter and the couple of these two indexes of all the subjects, respectively. 
The NNs whose inputs are the first two data sets have one single input neuron, while 
the latter has two input neurons. On the other hand, the inputs 2D-White, 2D-Grey and 
2D-WhiteGrey are the two dimensional FD indexes of sequences of (horizontal) brain 
slices of the white matter, grey matter and both of them of each subject, respectively.

The slices of each MRI image are 181 and their vertical arrangement produces the 
whole brain volume. In order to prevent border phenomena that could lead to erroneous 
or non possible FD computations, we restrict the input 2D sequences (of FD indexes) to 
the 60 central slices only, i.e., a sufficiently large part of the 181 2D slices such that all 
the FD indexes are defined and enough to provide the general behaviour of the FD spatial 
distribution. So, the NNs whose inputs are 2D-White, 2D-Grey have 60 input neurons 
each, while the input neurons double to 120 in the NN that acts on 2D-WhiteGrey data.

The hidden layer’s nodes may slightly vary in number according to the function to 
approximate: however, it is commonly accepted that their number may vary between the 
numbers of the input and the output neurons, with a minimum number of ten (we follow 
a practical rule of thumb suggested by [7]). The layers are connected by non linear sig-
moid functions whose general form is f (x) = 1

1+e−x
 . The output layer performs the cho-

sen categorization with one single neuron, in accordance with the binary values (0 = AD 
subject, 1 = healthy subject) as required.

Fig. 3   Topology of the Neural 
Network (NN) model used in 
this study
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Both the networks’ definitions and the output are handled with the NN toolbox of Mat-
lab. The learning algorithm seeks to minimize the error function generated on the training 
data to reach an acceptable level of performances, but it is not guaranteed to find a global 
minimum.

The training of the network is performed on the 70% of the dataset, while the remaining 
part is equally split between the validation and test sets, following the standards.

The NN toolbox of Matlab also manages the parameters for the stop criteria, in particu-
lar the number of epochs is personalized (set to 500 ) while we keep the minimum perfor-
mance gradient to the default value. In our study, we adopt two training strategies among 
the most popular and that acts quite differently, i.e., the Levenberg–Marquardt Backpropa-
gation and the Bayesian interpolation. For each NN model, we show the average perfor-
mances over about 1 K trainings on randomized training data set. We recall that the first 
training strategy performs a fast convergence avoiding most of the overfitting problems, 
while the latter tries to minimize estimation errors without penalizing the generalization 
capability [10].

3 � Results

The white and grey matter segmented images undergo a first statistical analysis in order 
to detect significant correlations between their 3D fractal dimensions and the presence of 
AD disease. As witnessed in the literature, only the grey matter FD correlates with the AD 
diagnosis, while no combined white and grey matter FD analysis is present. On the other 
hand, different effects have been investigated between the fractal dimension of AD subjects 
and the changes both in the physical structures of (parts of) the brain such as gyrification 
index and cortical thickness [22, 24], and in the cognitive assessment obtained by standard 
scale-cognitive tests. After the statistical analysis, we deepen our study by investigating the 
predictive capabilities of our neural network models both using the single 3D FD indexes 
of healthy and AD subjects’ white and grey matter and the sequences of their splittings into 
sequences of 2D FD indexes.

3.1 � Statistical analysis results

A first box plot of white and grey matter FD values for healthy and AD subjects is shown 
in Fig. 4.

A first visual inspection reveals that grey matter of AD subjects shows higher values 
than healthy subjects, while no difference seems to occur in case of white matter. Statistical 
tests confirm these observations. Specifically, Table 5 shows the result for t− test for the 
grey matter and Wilcox test for white matter. Concerning the first, we test the alternative 
hypothesis that the true difference in means between AD and healthy subjects’ FDs mean 
values is greater than zero. Instead for Wilcox test we consider the alternative hypothesis 
that true location shift does not equal 0.

F =
1

N

N
∑

i=1

(ti − ti� )
2
.
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As already observed, a significant difference is highlighted only in grey matter case. 
Finally, we study the behaviour offered by FD computed both on grey and white mat-
ter. In this case, each subject has associated two measurement. The Hotelling’s T-test 
return p < 0.001 , that lead us to accept the alternative hypothesis that the true differ-
ence in multivariate mean distributions is significantly different from zero.

3.2 � Neural network models performances

The statistical analysis of the FD indexes allows us to define a series of Neural Net-
work predictive models that are tuned according both on different series of input data 
and on different training algorithms, in particular we used two among the most popu-
lar, i.e. the Levenberg–Marquardt backpropagation (LM), and the Bayesian interpola-
tion (BR). The desired output for AD subjects prediction is binary (0 = healthy subject, 
1 = AD subject) according to the diagnosis provided in the ADNI database. Since the 
healthy and AD subjects populations are comparable in cardinality, we displayed the 
average performances of each network (on a 1 K trials) in terms of total recognition 
capability. No further normalization of the data is required.

The NN performances are presented in Fig. 5. We underline the differences between 
the NN8 and NN10 and the remaining NNs: the first two show good predictive perfor-
mances with a very low percentage of false positive and false negative, respectively. 
On the other hand, the remaining NNs, but NN12, have a percentage of false positive 
and false negative that distribute uniformly, so accordingly to the similar cardinalities 
of the AD and healthy subjects.

Grey White

AD ND AD ND

2.1

2.2

2.3

2.4

Group

Va
lu
es

Fig. 4   Box plot of fractal dimension values of AD and healthy (ND) subjects for grey and white matter

Table 5   p− values computed for 
Wilcox test (white matter) and t− 
test (grey matter)

Type White Grey

p 0.47 < 0.001
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It is worthwhile pointing out that, for each of the NN settings, the obtained predictive 
performances vary in accordance to the obtained statistical results. So, the NN models 
quantify the informative content of the data in terms of recognizability of the data set.

4 � Discussions

In this study, we showed that fractal dimension computed on preprocessed MRI scans pro-
vides a valuable index to distinguish between healthy and Alzheimer’s affected subjects. 
Because of the strong neurodegeneration that AD causes, it is commonly considered a dis-
ease of the brain’s grey matter but, in addition to the neuronal loss characteristic of the dis-
ease, white matter degeneration and demyelination may be important pathophysiological 

Fig. 5   NN predictive performances on healthy and AD subjects. Input data are: 3D-White, i.e., FD 
indexes of subjects’ white matter; 3D-Grey, i.e., FD indexes of subjects’ grey matter; 3D-WhiteGrey, i.e., 
FD indexes of subjects’ white and grey matter; 2D-White, i.e., sequences of sixty 2D slices FD indexes 
of subjects’ white matter; 2D-Grey, i.e., sequences of sixty 2D slices FD indexes of subjects’ grey matter; 
2D-WhiteGrey, i.e., sequences of sixty 2D slices FD indexes of subjects’ white and grey matter. ★the train-
ing process may stop with a very low false positive (NN8) or false negative (NN10) performances. ★★the 
Bayesian training process may fail in converging
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features. This is mostly related to the ability of discriminate between healthy and AD sub-
jects shown in our study.

We stress that different algorithms have been developed to estimate the fractal dimension 
of natural non regular objects, also indicated as natural fractals. Here, we used the box-count-
ing method that is commonly considered when dealing with 2D or 3D brain volumes. We 
first perform a statistical analysis that gives evidence of the relation between grey matter’s 
3D FD index and the presence of Alzheimer’s disease. On the contrary, white matter’s 3D 
FD indexes turn out to be not statistically significant related to the physical changes induced 
by this pathology. Finally, different to previous works, we proceed in analyzing the changes 
between the two previous measures and that obtained by considering both indexes at the 
same time. The results, obtained with a preliminary statistical analysis, corroborate the well-
known observation that relevant changes occur in the borders of the grey matter regions.

To deepen the analysis, we defined a series of Neural Network models to classify 
healthy and AD subjects from the values of their white and grey fractal dimension indexes 
and compare their performances are shown in Fig. 5.

At a first sight, the inspection of the relation between the FD indexes and Alzheimer’s 
disease showed that the performances of the NN models increase when passing from white 
to grey matter, in accordance with the statistical results. It is however relevant that the rec-
ognizing ability increases when the NN receives as input both the values of the FD indexes, 
although the statistical analysis has not been able to identify a significant relation between the 
white matter FD index and the AD subjects. Such a behaviour could underpin the presence of 
a more complex (non linear) relationship between the white matter FD index and Alzheimer’s 
disease that has not been detected by the performed standard statistical analysis.

More specifically, we consider the first six NNs, i.e., from NN1 to NN6 in Fig. 5, that 
act on the aggregate 3D FD data computed on the whole brain volume of each subject 
MRI. We found that the predictive performances slightly increase when shifting from the 
3D FD indexes of the white matter to those of the grey matter, until reaching the maximum 
when both indexes are considered. We notice that the choice of the training algorithm does 
not significantly affect the performances of the NN models. Although the recognizing per-
formances turn out to be quite low on these data sets, it is remarkable that the percentages 
of false positives and false negatives detected after the six training processes locate very 
close (one or two points at most) to the general performances.

Finally, consider the last six NN models, i.e., from NN7 to NN12 in Fig.  5, that act 
on the sequences of 2D FD data computed on a subset of the horizontal slices of each 
MRI brain scan. We immediately realize that the performances of the NN models increase 
when considering the spatial vertical variation of the 2D FD indexes both in the case of 
white and grey matter. This observation is in accordance with the literature: as a matter of 
fact the AD disease performs heavy atrophic modifications, even in its first stage, on the 
borders of specific regions of the brain that locate in its central part, such as hippocampal 
region, cingulate gyri, and medial temporal lobe [11] and that can be revealed when focus-
ing on them.

A further remark concerns the length of the input data sequences that seems to prevent 
the Bayesian training algorithm from performing at his best. In particular, we note that the 
training process may end with a huge number of false positives or false negatives, making 
clear that, in some cases, the presentation of the input data drives the Bayesian regulariza-
tion to step into a local minimum where almost all the sequences are assigned to the same 
class.

This remark is also supported by the excellent performances of NN9 and NN11 
trained using the Levenberg-Marquard backpropagation on the same data sets, and whose 



212	 N. Di Marco et al.

1 3

misclassified subjects distribute uniformly, so accordingly to the similar cardinalities of the 
AD and healthy subjects.

Finally, a last observation concerns the longest input data 2D-WhiteGrey: the model 
NN11 reaches the best performances here, enhancing the mutual benefit of the white and 
grey matter 2D FD indexes on the separation process. On the other hand, the Bayesian reg-
ularization process fails in converging in almost all the trials. As a matter of fact, conver-
gence rate of training algorithms for neural networks is heavily affected by the initialization 
of weights, so it could be worth exploiting different starting weights settings, that may vary 
from the simple random weight initialization to Kalman filters or Bayesian estimation, to 
lead the BR training to the final convergence.
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